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ON THE INSTABILITY OF A PERIODIC SYSTEM IN THE CASE OF INTERNAL RESONANCE* 

A.L. KUNITSYN and L.T. TASHIMOV 

The stability of periodic motion is studied in the critical case of n 
pairs of purely imaginary characteristic indices. It is shown that in 
the case of resonance, when the ratio of the modulus of one of the 
characteristic indices to the frequency of the unperturbed motion is an 
integer, instability usually occurs. The results obtained are used to 
study the free oscillations of an autonomous quasilinear system when the 
Andronov-Witt criterion /l/ cannot be used. The instability of free 
oscillations of the Froude pendulum at the bifurcation point is proved. 

1. Let us consider the problem of the stability of the o-periodic motion of a system 
with n degrees of freedom, in the critical case of n pairs of purely imaginary characteristic 
indices fh,(s = 1, . . ., n). Then the equation of perturbed motion can be written in the form 

/2/ 

Here E and n are complex conjugate variables, while E(l) and H(‘) are complex conjugate 
vector forms of l-th order with coefficients o-periodic in t. 

In practical applications the most interesting cases are those in which the problem is 
solved by the first non-linear terms of system (1.1). As we know, these are, to begin with, 
the cases of internal third- and fourth-order resonance. Here it was almost always assumed, 
with the exception of the canonical systems discussed in /3-5/, that none of the relations 
vs G h,ol(ni) were integers. It was shown in /6, 7/ that even when n=l, the case when vg 
was an integer, was characterized by increased complexity, and the evennessofthis relation 
played a major part. When the value is even, the problem of stability can be solved by the 
quadratic terms of system (l.l), and the criterion of stability is written in the form of 
the algebraic inequalities imposed on the coefficients of normal form. When vg is odd, the 
lowest order of the terms of the normalized system is the third, and the conditions of 
stability cannot be written in the form of an explicit system of algebraic inequalities for 
the coefficients of normal form. 

Below we shall consider the case when n>l under the assumption that one of the 
relations shown is an even number. We will assume without loss of generality that the quantity 
Vl satisfies this condition. 

Putting in (1.1) 

#‘= 2 

h+k =l 

$h, . . . . h,, *‘I, . ..s k,,) cl s)q;j 

k = kl + . . . + k,,; h = hl + . . . $ h,; s = 1, . . ., n 

and normalizing /8/, we can reduce system (1.1) to the normal form in the new complex conjugate 
variables u = (~1, . . ..u.,) and v = (vi,..., v,J (the subsystem for v is omitted) 

Ur' = C&i* + CuUlUi + COZUiz + 041 U I 7 (1.2) 
U-Z ‘==O([U~~), a=2,...,n 

c*o = -& f I-$* O* “‘I O) (t) exp (W) dt 
0 
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Let us consider a real system corresponding to system (1.2) t Putting us = 28 + iy*, c* = 

a@ + ibc& 

Xl' = X,(Z) + X1(3) + . . ., yr' = Y,(Z) -/- Y,(S) t . . . (1.3) 
,r," = X,(S) + . . ., y,' = Y,(S) + . . ., s = 2, 3, . . ., n 

Here 

Xl@) = (a*, + ao2) (.r12 - Yl") + a11 (22 + yl*) + 2 (b, - 
baa) r@l 

Yi@) = (b,, + b,) (xl* - ~1') + 6x1 (~1~ -I- yl*) + 2 (a,, - 

&I,) w/l 

and X,(S) and Y,(s) (a = 1, . . ., n) are third-order forms of the variable &$'a. 
Next we shall show in which cases the problem of stability can be solved by considering 

the second-order terms only, and when this is insufficient. We shall show that in the first 
case the trivial solution of system (1.3) is always unstable, while in the second case, as 
well as in the critical cases of the first-order approximation, additional equality-type 
conditions must hold. To prove this, we will use Kamenkov's theorem on instability in the 
critical case of N zero roots /9/, according to which the trivial solution of system (1.3) 
will be unstable if the form 

takes positive values on at least one real solution of the equation 

F = s,Y+~’ (~1, PI) - yx-&@) (XI, ~1) = 0 

If on the other hand the forms F and R do not have different real roots, then the problem 
of stability will not be solved by considering second-order terms only. 

Since R is a form of odd order, we shall have instability whenever the equation 

‘F (x) = &Q txYd*) (x, 1) - Xl@) (W, $31 = 0, x = r&/l 

has at least one root that is real with respect to X, for which 

The Problem of stability will not be solved by considering only some of the second-order 
terms, if:l) F(x) and R(x) have a single common real root+ and the Polynomial P(x)/@ -x*) 
has no real roots; 2) F(x) and R (x)have three common real roots. 

Let us consider the first case, assuming that there are no additional degeneracies. We 
see that F(x) and R(g) will have common roots only when the polynomials Xl@)@) and YL@)(x}. 
have common roots. The sufficiency of this condition is obvious. 

We can Prove the necessity by reductio ad absurdum. 
Indeed, regarding the equations F(x)= 0 and S(r)= 0 as a system of equations in X1(') and 

Y,(P), we see that its determinant A=x*i-i does not vanish whatever the real value of x, 
therefore the system has only a trivial solution which contradicts the assumption made. 

Assuming that 

a = al + aa + aa f 0, 6 = bx + b, + bJ # 0 (1.5) 
we shall write expressions (1.4) in the form 

X,(a) = a (x - x,,) (x - xl), Y,‘*) = b (x - x*) (x - x3 (1.6) 
When Xl#%, we will have 

a-9% 
PC*=-, 

A--P1 
xldL; pldL!5!E, p&y??L 

91 = (a11 - a,* - a&=, 9% = (611 - b,, - b&/b 

Substituting the roots obtained into one of the Polynomials (1.6) and equating the 
resulting expression to zero, we obtain the conditions for the existence of a common real 
root x* of P and R 

h - 3” = (pn - Pl) (P&l - Wl) 0.7) 
Taking into account (1.5) , we can write the expression for F in the form 

F = b (x - xJ f (x), f (x) = 9 - (x. - a/b) x + @lb) %I 

when the inequality 
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holds, the polynomial f(x) has no real roots, therefore X+ is a unique 
F and R. 

Note. In the degenerate case, when condition (1.5) does not hold, 
conditions of the type (1.7), (1.8) by putting x = YI/SI. 

WI 
common real root of 

we can obtain 

When condition (1.5) holds, F and R cannot have three common real roots. 
Let us assume the opposite. Then the polynomials X1@) and Y,@) must also have common 

roots, and X,("'= ocp (x), Y,(Z) = be (x). Then 

F = YZ% (~1 (ax - a). R = @+ (x) (ax + bf 

which shows that the remaining roots are always different. 
Let us consider another degenerate case in which 

Then 
a11 = sop = az0 = 0 (1.9) 

F = g3 (6x2 + bn - 3b,, + b,,) x 
fz = y3 [(bu -i- 3b,, - b,,) xe + bxl - 60% - b,,l 

(1.10) 

We see from (1.10) that if the equation 

bm = b02 -I- b,, (1.11) 

does not hold, then we will have R>O when x = 0. If (1.11) holds, but 

i km I -=z I b, j (1.12) 

then F will have a real non-zero root for which a>o. Thus, even when (1.9) holds, we shall 
nearly always have instability. The exception will be the case of additional degeneracy 
characterized by simultaneous satisfaction of Eq.(l.ll) and of the reverse inequality to 
(1.12). In this case the problem of instability must be solved using terms of higher order. 
The above analysis leads to the following theorem. 

Theorem. When internal resonance of the form hlo = Nni exists in system (1.1) where 
N is any even number, the trivial solution is unstable irrespective of the terms of higher 
order of smallness, provided that conditions resembling the Eqs.(l.7), (1.11) and such, do 
not hold. The problem of stability in these degenerate cases cannot be solved using the 
second-order terms only. 

2. We shall use the results obtained to prove the instability of the free oscillations 
described by the quasilinear equation 

2" -j- k% = rf (x, Z', jL) 

whose function ~(x,x*, p) satisfies the conditions of the Poincarh theorem on the existence 
of a periodic solution m(ptl t) analytic with respect to the small parameter p, with the 
period 

o = 2nk-‘XI x = [I -f- 0 (p)la (2.1) 

Let us consider the problem of the stability of this solution in the case when the 
Andronov-Witt condition /l/ 

is violated, restricting ourselves to terms of the first degree-in EL. 
Putting y = I- cp(t, I*) and replacing t by the new independent variable 'c =kX-‘t, we 

obtain the following equation of perturbed motion (the prime denotes differentiation with 
respect to Z): 

y" f $y = @-2x2 A@ (2.31 

Here 

Q, (5, x', p) = f (s, kx-'r', a) (2.4) 
A@ = @,y + &,y + ‘/&‘,,y* f @,,.yy’ + V&b+, (Y’)~ -I-. . . 

(the derivatives @%,a,, etc. are calculated for p = 0 and are %-periodic functions of 

4. 
According to the theory of periodic solutions of autonomous systems /l/, a linear 

equation corresponding to (2.3) has always a single multiplier p = i. When condition (2.2) 

holds, the second multiplier also becomes equal to unityanathe problem of stability falls 
within the category of the critical cases. It is easy to notice that this is the critical 
case of a pair of purely imaginary characteristic indices discussed in Sect.1. 
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Indeed, using the well-known formula 

?.. &*= ?-'(lnIp~+largp-&%nni), n=0,1,2,... 

where T is the period of the unperturbed motion, and assuming that for system (2.3) T - 2n, 

while the characteristic indices tend to &i as p-0, we obtain h,T/(nl)=: 2 which determines the 
resonant character of the problem. 

Let us apply to (2.3) a linear transformation with 2n-periodic coefficients 

The unknown %-t-periodic functions p@(T) can be chosen so that the part of the system 
linear in yl, y, is autonomous and of diagonal form /l/. Then we obtain the following 
system in complex conjugate variables z = y, + iyl, z* = y,- iy r (the complex conjugate equation 
is not written out) 

z = iz + pk-aX2&QD 

where 6Q is the set of second-order terms in the expansion (2.4). 
Let us separate the terms linear in p 

t@'=%IL [(QM -Q=,,- 2iu&)z* + (u&*,*-a& + 2m&)z** + 2 (oXX*-a&~)ZZ*] 

Carrying out the normalization according to Sect.1, we obtain the following system in 
new complex conjugate variables E, 'I) (the equation for q' is omitted): 

The terms omitted are the higher-order infinitesimals in pL, and ccrg are constant complex 
coefficients of normal form obtained from the formulas (1.3) 

5’ =& (croE2 + cdq + co*q*) + . . . 

(2.5) 

If the coefficients (2.5) fail to satisfy conditions of the type (1.71, (l-11), then the 
free oscillations are unstable at least when the values of p are sufficiently small. 

3. Let us inspect the stability of free oscillations of the Froude pendulum whose 
motion is described by the equation /lo/ 

I@' + hcq’ + m& = M (L-2 - cp’) (3.1) 
where I is the moment of inertia of the pendulum about the axis of rotation, h is the co- 
efficient of viscous friction, and M(Q- rp’) is the moment of dry frictional forces depending 
non-linearly on the relative angular velocity of the pendulum P-o'. Expanding this function 
in series near cp'=O and introducing a new variable q= V--M (P)/(Ik*) where k%= mglll, and new 
"time" r= kt, we obtain in place of (3.1) 

9' + (I = P I%7' + B (0 + Y (4')' + . . .I = p@ (q’) (3.2) 

P=&&, 
1 dM k’ daM 

a=-T *x-i, B=si;*z* 
kr dW 

y= - 120h +dQL 

The amplitude of free oscillations is found from the equations /ll/ 

The condition of stability derived from the analysis of the equations of the first 
approximation is obtained by considering the sign of the derivative /ll/ 

namely when dY/(dr)>O we have stability, when d’P/(dr)<O we have instability, and when 
dT/(dr)=O we have the critical case discussed above. 

Let us apply the results obtained, assuming that j3>O,y<O. Examining the curves 
Y (r) = 0 and dlu/(dr)=O shown in the figure by the solid and dashed line respectively we see 
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that when ~<a,=9 fi*I40~), free oscillations are impossible, while two modes of free oscil- 
lationsarepossiblewhen a>%, the unstable oscilations with smaller amplitude, and stable 
oscillations with larger amplitude. Thus the value c(* is bifurcational and resonant. Indeed, 
it is at the bifurcation point cc= et, r* = raa = -3fl/(Sy) that we have d’i’/(dr) = 0, and this is 
precisely the condition under which (2.2) holds. 

Using (2.4) to calculate the partial derivatives of the 

7.2 function (~(9') representing the right-hand side of Eq. (3.2), we 

d 

obtain 

Dqp = ~**#'O, a)*',$ = (I' (6s + 2oyq") 

where we must put p'= --r,sint. 

r:- 

Substituting the derivatives obtained into (2.5), we obtain 

( 

,/-- 
e-z_-_ 

azO = an = (I,,* = 0, b,, = -3r(Z$ + 5yra) 

I . . 
b,, = SyP, b,, = 6r (28 + Syr*) 

---L__ 

vu. 
We see that irrespective ofthefact that the degenerate 

at a cz case (1.9) is realized here, Eq.(l.ll) is not satisfied. Using 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

the results obtained above we can therefore conclude that the 
free oscillations of the Froude pendulum are unstable at the 
point of bifurcation. 
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